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Abstract

Optimal locations and types for feedback sensors which

meet design constraints and control requirements are dif-

ficult to determine. This paper introduces an approach

to choosing a sensor configuration based on Full Control

synthesis. A globally optimal Full Control compensator

is computed for each member of a set of sensor configura-
tions which are feasible for the plant. The sensor configu-

ration associated with the Full Control system achieving

the best closed-loop performance is chosen for feedback

measurements to an output feedback controller. A flexi-
ble structure is used as an example to demonstrate this

procedure. Experimental results show sensor configura-
tions chosen to optimize the Full Control performance

are effective for output feedback controllers.

Introduction

Choosing an effective set of sensor measurements is es-
sential for designing controllers to achieve stringent per-

formance and robustness goals. Often control require-

ments are not anticipated in the design stage for physi-

cal systems and sensor configurations are chosen in an ad
hoc manner. Flexible structures are especially challeng-

ing systems for choosing sensor locations and types due
to the large number of mode shapes. Also, tradeoffs must

be met by balancing the number of sensors needed to

observe the large number of closely spaced modes while

simultaneously considering the added weight and cost of
these additional sensors.
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The issue of choosing sensor locations has been stud-

ied by considering grammians for observability coupled

with minimizing a cost function. Skelton and DeLorenzo

choose a cost function as an LQG performance metric

formulated as the root mean square contribution of each

sensor output. Sensors associated with small cost func-

tions may be removed due to their low effectiveness [15].

Similar approaches are developed using modal proper-

ties. Kim and Jenkins choose a performance metric

on modal controllability weighted by the modal

cost of Skelton [8]. This approach emphasizes both the

degree of controllability and modal participation in the

performance criteria. Lim defines a performance metric

using a weighted modal projection [9]. This approach is
based on a relationship between grammian singular val-

ues and modal observability. Actuator and sensor pairs

are chosen with principal directions parallel to the modes

with large singular values.

This paper considers an approach to choosing a sensor

configuration based on Full Control synthesis. The Full

Control system allows the controller to independently
affect every state and error signal. Computing the op-

timal Full Control controller is equivalent to computing

the optimal controller for a given set of sensors. Synthe-

sis of globally optimal controllers to minimize an 7/_ or

p upper bound is formulated in the Linear Matrix In-

equality (LMI) framework for Full Information feedback
and extended here to the dual problem of Full Control

synthesis [12, 13].

The issue of sensor configuration is closely associated

with the issue of control design. The optimal closed-

loop system requires an optimal configuration of sensors
and optimal gains in the compensator. Optimality in

only one of these areas will restrict the achievable perfor-

mance and robustness of the closed-loop system. Utiliz-

ing the Full Control system is advantageous for synthesis

and analysis of sensor configuration since a Full Control

compensator can be computed which is globally optimal.
The procedure will not be affected by local minima as-

sociated with control synthesis.



Thetechniquepresented in this paper considers a cho-
sen set of sensor locations. Globally optimal Full Con-

trol compensators are computed at each of these loca-
tions to determine the maximum performance and ro-
bustness level achievable. The sensor locations chosen

for implementation on the physical system correspond to
the sensor locations achieving the best Full Control per-

formance. There is no guarantee that the optimal Full
Control sensor locations are equivalent to the optimal

sensor locations for a general output feedback controller;

however, experiments indicate this technique can choose

effective configurations for a physical system.

This approach easily allows a sensor configuration to be

determined by considering variations in both type and

location of sensors. The plant model used to design con-

trollers for these configurations may be generated from

experimental data transfer functions or from a compu-
tational finite element model using a package such as

NASTRAN. Additionally, choosing actuator configuration

using globally optimal Full Information synthesis is a
natural extension to this technique [10].

Sensor configurations are chosen for a flexible structure

using the method described in this paper. Several sets
of sensor locations are considered for feedback measure-

ments to achieve vibration attenuation at different po-

sitions on the structure. Globally optimal Full Control

compensators are computed to determine the best sensor

configuration of the sets. Output feedback controllers are

generated and implemented on the experimental struc-

ture using feedback from these sensor configurations.

Robust Control Synthesis

Consider a state-space description of a linear time-

invariant plant P(s).

z = Cx En E12 d

y C2 E_I F-_2 u

where A E R'_Xn, B1 E R'_Xna,B2 E RnXn',Cl E

Rn'xn,c2 E R nyxn , and the E matrices of appropriate
similar dimensions.

Define Ep as the set of all real, rational, proper con-

trollers, K(s), which stabilize the closed-loop system.

Analyzing performance using the induced _oo norm
leads to the following minimization problem for Fi (P, K)
which is the linear fractional transformation (LFT) for

the lower loop of P closed with the controller K.

inf sup_[Fl (P(y.o),K(y_))] = inf HFi (P,K)I]oo
KE_ wER K EIC

This is an 7_oo optimal controller synthesis problem
which has been solved using state-space equations [3, 5].

The structured singular value, p, can be used to de-

termine robustness of the closed-loop system to struc-

tured modeling uncertainty and the achievable perfor-

mance level in the presence of real and complex uncer-
tainty. The uncertainty description is structured with

two types of blocks. The blocks are repeated scalar or

full block matrices. Let integers m,n,p define the number

of real scalar, complex scalar, and complex full blocks.

Define integers R1,... ,/_ such that the i _h repeated

scalar block of real parametric uncertainty is of dimen-
sion R_ x/?_. Define similar integers C1,..., Cn to de-

note the dimension of the complex repeated scalar blocks.

The structured uncertainty description A is assumed to

be norm bounded and belonging to the following set.

° °.... 6_IR= _x lc_ .. •6. Ic_ Ax...

R,*7E c }
Real parametric uncertainty is allowed to enter the prob-

lem as scalar or repeated scalar blocks. Complex uncer-

tainty enters the problem as scalar, repeated scalar or
full blocks.

The function p is defined as

1

_(P) = m_m{O(A) : det(I - Pa) = 0}

with #(P) = 0 if no A exists such that det(I - PA) = 0.

Upper and lower bounds for # have bee derived which

utilize two sets of scaling matrices which are structured

similar to the uncertainty block structures.

V {diag (D L . _ ° D_, d_ Io,,. °= .., Din, D l ,..., .., dpI_)

: 0 < D = D*,D_ 6 C_×m,D7 6 cC'xC',d_ 6 C}

The second set of scalings in G affect only the real para-

metric uncertainty blocks.

= {diag(G1,... ,Gin,O,...,0) : Gi e C m×R' }

An upper bound for p is computed as an optimization [4].

The real/complex/_ upper bound reduces to the well

known complex p upper bound when there are no real

parametric uncertainty blocks.

< inf  (Ww' +G2)+)
Ge_

D_T_

The structured singular value provides a measure of ro-

bustness in the presence of the defined structured un-

certainty. The Z) and _ are restricted to be constant
matrices to scale with time-varying uncertainty in this

paper. The objective of control design is to maximize
robust performance which corresponds to minimizing p
in this framework.



Feasibility : Output Feedback System

7too control synthesis involves iterating over a set of fea-

sibility conditions. These conditions determine whether

a controller exists that achieves a desired closed-loop 7too
norm value. A standard bisection search can be used to

find the lowest achievable norm value to within a given

accuracy. The optimal controller is computed using el-
ements of the plant and the solutions to the feasibility
conditions.

The controller feasibility and synthesis may be formu-

lated as state-space equations or in the LMI frame-

work [6, 7]. The feasibility conditions in the state-space

framework are two Riccati equations. The comparable

feasibility conditions in the LMI framework are gener-

ated by applying the Bounded Real Lemma and consid-

ering orthogonal subspaces to matrix elements.

A separate LMI formulation is developed for computing

optimal full information controllers [12, 13]. This ap-

proach uses algebraic arguments to demonstrate a con-
stant matrix condition which is equivalent to the state-

space 7too control problem. LMI feasibility conditions

are generated using a variant of Parrott's theorem [14].

This paper will adopt a standard for denoting plant ma-
trices for ease of notation and convenience in theorems.

Denote P as the continuous-time state-space plant ma-

trix with the elements P(s) = {A, B, C, D}. Denote MR
as the constant matrix whose entries are comprised of

the state-space elements of P.

P=D+C(sI-A)-IB ._ Mp= 6' D

The LMI feasibility conditions utilize a matrix Ta which
is formulated for a real scalar a > 0.

[,To= v_1 a1

This matrix is used to compute the following star prod-

uct LFT with ei = (I + c,A) -1 defined for notational
convenience.

F'(Ta'MP) = [ (I + aA)ftv/_CAE_/_tB ]+aC.4B

Computing the star product with T_ has several impor-

tant properties. The most immediately noticed property

is the relationship between the star.product and the bi-
linear transformation. The matrix P = F, (T_, P) is the
discrete-time formulation of the continuous-time plant

P. The star product also has a commutation property

such that F, (T_,F_(P,K)) = Ft(P,F,(T_,K)).

The following theorem demonstrates a constant matrix
condition, formulated using the star product, which is

equivalent to an 7/o0 condition [13].

Theorem 1 Given the state-space plant P(s) and asso-
ciated constant matrix Mp along with the set l) of scaling

matrices, then the following are equivalent.

1. There exists D E D and stabilizing K E Igp such
that

IID½E(e,K)D-½11oo < 1

g. There exists D E D and stabilizing K E ICp
along with real X = X T > 0 such that with

g = diag(X, D),

"_(Z]Fo(Ta,E(Mp, K))Z-½) < 1

3. There exists D E 2)and stabilizing K E ICp

along with real X = X T > 0 such that with

Z = diag(X, D),

"_ (Z½Ft(F,(T_,Mp),K)Z-½) < 1

Now perform a change of variables. Denote {R, U, V, T}

as elements of the constant matrix term involving the

star product F,(Ta, Mp). Introduce Q to replace K(I +

TK) -1 in the closed-loop LFT for notational conve-
nience.

El (Fs (Ta, Mp), K) = F_ V T ' K = R + UQV

The final theorem presents the pair of LMI optimiza-
tions that represent the 7/_ controller feasibility condi-

tion for a general output feedback system. The variant

of Parrott's theorem is applied to the constant matrix

condition involving the maximum singular value.

Theorem 2 Given the state-space plant P(s) and asso-

ciated constant matrix MR with the star product elements

Ft (F, (Ta, Mp) , K) = R + UQV along with the set l) of
scaling matrices, then the following are equivalent.

1. There exists stabilizing K G IC_, and D E l) such
that

IID½Ft(P,K)D-½11_ < 1

_. There exists stabilizing K E tgp and D E 1)

along with rexd X = X T > 0 such that with

g = diag(X, D),

"_(Z½(R + UQV)Z-½) < 1

3. There exists stabilizing K E ICp and D E l)
along with real X = X T > 0 such that with

Z = diag(X, D),

(Rz-'R T- z-') < o

(R zn - Z) VI) < 0



Feasibility : Optimal Full Control

Consider the state-space Full Control plant Pie.

A[B IO
PIc = C1 Dn 0 I

C2 D21 0 0

Define Mpl, as the constant matrix associated with the

state-space elements of Pie. Formulate the R, U, V ele-
ments of the star product term F, (Ta, Mpl. ) using the

term A = (I + aA) -1 for notational convenience.

R= [ (I+ aA)A V_-_-4Bx ]v_C1A En + aC1AB1

0 ]aCa A I

V= [v/_C2A E12 + aC2ABI]

The matrix U is square and invertible for the Full Con-

trol system. This full rank condition is anticipated by

the complete controllability of this system. A linearly

independent set of control vectors are available to affect

the states and error outputs of the plant. Correspond-

ingly, the perpendicular subspace, U±, utilized in the
LMI conditions for 7too controller feasibility is null.

The feasibility condition for existence of an 7/o0 con-
troller for Full Control feedback is reduced to a single

LMI. The LMI involving U± in Theorem 2 is vacuous

and automatically satisfied. The remaining LMI involv-

ing variables V and V± constitutes the only condition for

Full Control feasibility as demonstrated in Theorem 3.

Theorem 3 Given the t%11 Control plant Pfc and scal-

ing set D, define the following :

I. The augmented scaling matrices Z

0 D :0<X= 6 ED

2. Real scalar a > O, so that (I - aA) is invertible

3. R and V as defined above

[ V ] isinvertible4. V± such that vTV± = 0 and V±

Then, there exists a stabilizing K E ICv, o and a constant
D E D such that

[D½FI(PIc,K) D-_[oo<I

if and only if the following convex set is nonempty.

{Z _ Z: _,_, [V± (R*ZR - Z) Vl] < 0} # {0}

This formulation is easily extended to account for real

parametric uncertainty [2]. The maximum singular value
condition in Theorem 2 is replaced with the correspond-

ing condition from the real/complex # upper bound.
Consider this condition for the matrix system R + UQV

including the additional scaling matrices _.

u(R + UQV)

<

<

o(W(R + +
o (_ +UQV)

where _= (DRD-1 +3G) ff+G_)-½
O=DU

(" = VD -1 (I + Ga) -½

The variant of Parrott's theorem can be applied to this

new singular value condition in the variables R, U and V.
The new matrix 0 retains the desired full rank condition

since both D and U are invertible. Thus, a single LMI

represents the feasibility condition. Consider this LMI.

(_± (_._- _)v;)
= _ (V±D ((D-'R*D- )G) (DRD-' +3(7)

- (I + G2) ) DV._)

= _ (v± (n'_)n + s (n'_ -_n) - b) v_)

where /)=D 2ED

= DGD E

This feasibility condition to determine existence of a con-

troller that satisfies a closed-loop p condition may be less

conservative than the previous condition since it directly

accounts for real parametric uncertainty. Theorem 4

combines Theorem 3 with the real/complex p bound.

Theorem 4 Given the Full Control plant Pie and scal-

ing sets D, _ define the following :

I. The augmented scaling matrices ZD

0 D :O<X= 6 D6D

_. The augmented scaling matrices ZG

{[00] }Z¢= 0 G :G6g

3. R, V, V± and a as defined in Theorem 3.

Then, there exists a stabilizing K 6 ICpIo such that

#(FI(PIc,K)) < 1

if the following convex set is nonempty.

{Zo e Zv,Za E Z_ :

-_[v± (R*Zoa + 3(R'Za - ZGR) - zo) v__]< o}



Choosin_ Sensor Configuration

Synthesis of optimal Full Control compensators can be

used to determine efficient sensor configurations. The
Full Control system allows the controller to indepen-

dently affect every state and error signal. The previous

section demonstrates globally optimal controllers can be

computed for the Full Control system. Computing opti-

mal Full Control compensators is equivalent to comput-

ing the optimal controller for a given set of sensors.

An optimal sensor configuration can be chosen by min-

imizing the achievable Full Control performance level

with respect to a set of possible sensor configurations.

Plant models are generated for each sensor configuration
under consideration and a Full Control compensator is

computed for each plant using Theorem 4. The optimal

sensor configuration chosen with this method may not

be globally optimal over every possible sensor location

in the system; rather, it is optimal with respect to the
considered set of locations.

The following algorithm demonstrates this procedure.

Algorithm 1

• Define state-space elements of transfer function

from disturbances to errors.

P = C1 Dll

• Define set of n sensor configurations.

C_ _)_I

for i=l:n{

A B1 I 0]
Formulate P}_= C1 Dll 0 I

cl o o

Compute 7i = inf p (Ft(P}e,K))
K EJC

}

corresponding to 7j = mi.'nTi.
$

The plant model and associated set of sensor configura-

tions used in this algorithm may be generated using com-

putational packages, such as RASTR£11,or experimentally
derived transfer functions. Finite element models give

the freedom to easily compute a large number of sensor

configurations but may be subject to modeling errors.

Experimental data gives a more accurate representation
of the true system but it may be difficult to physically

reposition a large number of sensors and identify models
for each location.

Location, type, and number of sensors used in each con-

figuration, along with the total number of configurations

to be considered in the set, may be chosen using several

criteria. The set may reflect physical requirements lim-

iting the sensors to select configurations due to size of
the sensor, direction of sensing, wiring connections and

weight restrictions. The set may also be chosen based on
a priori knowledge of the system and properties such as

symmetries, mode shapes, and previous control design

experience.

This algorithm is not guaranteed to generate a globally
optimal sensor configuration for output feedback con-

trollers. The computed optimal sensor location may not

even be optimal among the discrete set of sensor configu-

rations when considering an output feedback controller.

The computed sensor configuration is only optimal with

respect to a Full Control compensator; however, there are

many plants which can effectively utilize this method.
If the dominant modes affecting the achievable perfor-

mance are controllable, or nearly so, then the physical

actuator sets used for output feedback controllers will

be able to achieve, or nearly so, the performance of the

Full Control compensator.

A similar procedure can be formulated based on minimiz-

ing the achievable performance level of output feedback

controllers; however, there are advantages to using Full

Control synthesis. The Full Control compensators are

guaranteed to be globally optimal while output feedback

controllers, computed with methods such as D-K itera-

tion, are only locally optimal. A poor local minimum

may capture the output feedback controller synthesis for

a given sensor configuration. The resulting optimal sen-

sor configuration would be incorrectly computed due to
deficiencies in the control synthesis procedure.

Additionally, the Full Control synthesis is an LMI which

is easily solved with no user interaction using convex op-

timization algorithms. D-K iteration requires the user to

monitor the process and select weighting functions. Suc-

cessive D-K iterations might produce better, or worse,

performing controllers depending on these weight selec-
tions and initial conditions.



Flexible Structure : Model

Sensor configurations are chosen for vibration attenu-

ation of an experimental flexible structure. The flexi-
ble structure is constructed at the Dynamics and Con-

trois Laboratory in the Department of Aerospace Engi-

neering and Mechanics at the University of Minnesota.
This structure models a space truss for potential satel-

lite and space platform applications. The structure is

designed to place 12 lightly damped modes between 0

and 100 rad/sec. The flexible structure is represented in

Figure 1 and Figure 2.

\

/
Figure 1: University of Minnesota Flexible Structure

The structure consists of a rigidly held fixed top plate

and four hanging bays numbered 1 through 4 with Bay 1

being at the top of the structure and Bay 4 at the bot-

tom. Each bay contains an aluminum plate and thin hol-

low rods connecting corners of neighboring plates. The

top four plates are spaced .62 m apart while the bottom

plate is .47 m below the third bay. Plates in Bay 2 and

Bay 4 are triangular frames while the others are solid.

The actuators for control are contained in Bay 3. Three

actuators are colocated along diagonal rods connecting

the top and bottom plates of this bay. These force actu-

ators are voice-coil type actuators produced by Northern

Magnetics as ML3-1310-020LB with a limit of +2 pounds

of force. The working linear stroke is +12 inch with an
effective bandwidth of 200 Hz.

Linear displacement sensorsare colocatedalong the di-

rectionofthe forceactuatorsinBay 3. These sensorsare

Trans-Tek 0242 type sensorswith a working range of:i:_

inch.They have zero hysteresisand are linearto within

+.5% up to the bandwidth of100 Hz.

Accelerometers may be placed along the edges of any

plate in any Bay. These accelerometersare ICSensor
3145-002 with a bandwidth of300 Hz. These sensorsare

aligned along the horizontalcomponent of an actuator

and do not measure any verticalcomponent of move-

ment.

Figure 2 shows the control elements in Bay 3. The colo-
cated actuators and displacement sensors are seen along

the diagonal rods. The accelerometers are placed atop

the horizontal edges of the triangular frame plate.

Figure 2: Control Elements in Bay 3

An analytical model is generated for the structure. A
NASTRAN model is available; however, this paper uses ex-

perimental data to formulate the model. Experimental

transfer functions are computed from the actuators to

the accelerometers on Bays 3 and 4 by commanding sinu-
soids of varying frequency to the actuators. System iden-

tification algorithms based on curve fitting techniques
and model reduction via balanced realization computes

a 38 °* order model. Transfer functions plots of the open-

loop peak gain for Bay 3 and Bay 4 accelerometers is

given in Figure 3.

t0'
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J
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Figure 3: Open-Loop Peak Gains f_om Bay 3 Actuators to
Bay 3 and Bay 4 Accelerometers



Flexible Structure : Objective Flexible Structure : Full Control Synthesis

It is desired to formulate controllers to attenuate vibra-

tion and lower the peak gains of the open-loop system.
Accelerometers ate used as the performance signals with

a peak gain of approximately 10 for the 65 rad/sec mode.

Bay 3 accelerometers ate located in the same bay as the

actuators so it is anticipated more performance can be

achieved for these sensors. Bay 3 attenuation is desired
to be approximately 4.6 while the performance request

for Bay 4 is a factor of 3.5 for attenuation. Performance
wbay3 and Lwbay4weightings, ,, _r! ""wr1' are included with the ac-

celerometer error signals to specify the desired attenua-
tion levels.

W b_¢3 4.6 wbaT/4 3.5
,I = i"6 "',,..I= TG

Additive uncertainty between the control inputs and sen-
sor measurements is included to account for unmodeled

dynamics and neglected high frequency modes. A dy-

namic weighting, Wadd, is affected on each displacement
and accelerometer sensor for feedback.

s2 - 72s + 4790
W_dd

482 -- 2058 -t- 28910

The physical actuator positions ate affected by a distur-

bance input. A constant weighting, Wdiot = .5, is in-

cluded to normalize the disturbance signal affecting each

control channel. Sensor noise is also included in the sys-
tem to affect the accelerometer feedback measurements.

Constant weightings of W_i,_ = .01 are included to nor-

realize the noise affecting each sensor.

The magnitude of the control signal for each physical

actuator is included as a performance error to limit the

amount of control actuation. A weighting of W_,t = .2

is used as the performance penalty for each actuator.

The open-loop flexible structure model with uncertainty

blocks and weightings in given in Figure 4.

•disturbances

actuator, _-7

_ _ input

noi_ _ feedbackmeasurements

Figure 4: Flexible Structure Block Diagram

Full Control compensators are computed for systems de-

rived as subsets of the flexible structure model in Fig-
ure 4. This block diagram is designed with 6 accelerom-

eters and 3 displacement sensors for performance errors
and feedback measurements. These 9 sensors ate divided

into 3 groups of 3 with the following notation.

d ad ad

31,32,33

41,4a, 43

displacement sensors in Bay 3
acceleration sensors in Bay 3

acceleration sensors in Bay 4

The subscript on the sensor designations indicates the
horizontal component of the sensing direction. The

accelerometers are placed along edges of the horizon-

tal plates while the displacement sensors are colocated

along the diagonal rods connecting corners of neighbor-

ing plates with the same horizontal direction of sensing

as the accelerometers. Sensors 3_, 31 and 41 axe located
along the same edges of plates on the same side of the

structure and consequently have the same horizontal di-

rection of sensing.

The uncertainty structure for the system in Figure 4 has

a single uncertainty block. This block represents addi-
tive uncertainty on the sensor signals used for feedback

measurements to the controller. This uncertainty, A_dd,

is a complex operator to allow variations in both magni-

tude and phase. Aadd is treated as an unstructured full

block uncertainty for controller synthesis.

A performance block will also be included in the con-

troller synthesis procedure. This block relates the noise
and disturbance inputs to the performance errors. There

are 3 noise disturbances affecting the 3 physical actua-

tors and 9 noise inputs for the sensors. The performance

errors are composed of 3 penalties on the amount of ac-

tuation and 6 weightings on the accelerometers.

Initial controllers are synthesized to determine the type
of sensors to use for feedback. Full Control compensators

are computed for the system with Bay 3 accelerome-

ters, 31,32,33, used as the error signals to be minimized

and feedback measurements of either the Bay 3 displace-

ments, 3d, 3_,3 d, or the Bay 3 accelerations, 31,32,33.

The optimal achievable 7too norm was lower using the ac-
celerometers than the displacement sensors for feedback.

This result agrees with previous analysis of the structure

indicating the accelerometers axe generally more effective

than the displacement sensors for vibration attenuating

controllers [11]. The control designs presented in this pa-

per will ignore the displacement sensors and only utilize
the accelerometers.



Full Control compensators are computed for several con-

figurations of accelerometers. The performance errors
used for vibration attenuation are chosen to be either

the Bay 3 accelerometers, {31, 32, 32}, or the Bay 4 ac-

celerometers, {41,42, 43). Several combinations of these
sensors are used for feedback measurements with either
2 or 3 sensors in each combination. The number of

combinations is reduced by symmetry arguments which

indicate {31,32} should be as effective as {31,33) and

{32,33}. The achievable p performance levels for the

optimal Full Control compensators are given in Table 1.

Feedback Bay 3 Bay 4
Accelerometers Performance Performance

1131,32,3211oo 1141,42,43Hoo
31,32 1.378 3.031

31, 32, 33 0.299 0.719

41,42 1.641 0.656

41,42,43 0.299 0.511

31,41 3.281 1.312

31,42 1.641 0.609

"l_able 1: Achievable Full Control p Performance Levels

Flexible Structure : Bay 3 Attenuation

Analysis of the first performance column of Table 1 in-
dicates the effectiveness of various sensor configurations

for providing feedback to control Bay 3 accelerometers.

The most effective sensor configuration for Bay 3 vibra-
tion attenuation is to use three sensors in the same bay.

Feedback configurations using all Bay 3 sensors or us-

ing all Bay 4 sensors achieve p = .299 for Full Control
closed-loop performance. These performance levels are

similar since the set of sensors in each bay is able to ob-

serve the dynamics of Bay 3. Each set of accelerometers

is able to provide sufficient information to the controller

to attenuate the Bay 3 vibration responses.

Restricting the feedback to only two sensors significantly
decreases the optimal performance level. The p values in-

crease by approximately a factor of 4 when using {31,32 }

as compared to {31,32,32} for feedback. The perfor-
mance decreases even more if the two sensor are aligned

in the same direction. The p of 3.28 is for {31,41} is

twice the p = 1.64 value achieved when using {31,42 }.

Output feedback controllers are generated using D-K it-
eration for vibration attenuation of the Bay 3 accelerom-

eters. Separate controllers are designed for 2 different

feedback configurations. The first controller, K 3, will

use the 3 sensors in Bay 3 to control vibration in Bay 3.

The second controller, K 3 will feedback the 3 sensors in

Bay 4 to attenuate vibration in Bay 3.

Robust stability is plotted for each controller in Figure 5.

The peak robust stability p values are .445 for K 3 and

.456 for K_. /_ is less than one for each controller to

indicate the desired robustness objectives are achieved.

2
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Figure 5: p for Robust Stability

Nominal performance is also calculated for each con-

troller as 1.152 for g3a and 1.880 for K 3. The weighted
norms greater than 1 indicate neither controller is able to

achieve the desired performance objectives. /_ for nomi-

nal performance is plotted in Figure 6.
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Figure 6: /_ for Nominal Performance

The robust performance p values for each controller is

given in Figure 7. The p upper bounds are computed as

1.296 for K 3 and 2.065 for K_. Each controller gives a

peak p greater than 1 indicating robust performance is

not achieved for either output feedback controller.

The robust performance _u plots are of similar shape for

each controller with peaks at 104 rad/sec even though

for K43 is much higher. Both controllers are driven by

meeting the performance goals as evidenced by Figure 6.

The open-loop gains in Figure 3 are smaller from the

actuators to the Bay 4 sensors as compared to the Bay 3

sensors. K 3 is unable to increase the controller gains to

match the performance of K 3 due to the penalty on the
amount of control actuation.
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Figure 7: p for Robust Performance

The Full Control synthesis results indicated controllers
could be computed which achieve similar performance

levels using either Bay 3 or Bay 4 feedback. There are

several possible explanations to account for the poor per-

formance of K 3 in comparison to K 3. The Full Control

results axe based on a globally optimal controller while

D-K iteration may have computed a K 3 far from opti-

mal. Also, the optimal Full Control compensator may

be realized as a constant gain controller while K_ was
greatly affected by bandwidth constraints.

Peak gains of the experimental closed-loop transfer func-

tions are plotted in Figure 8. K_ provides better attenu-

ation for the modal response at 64 rad/sec which agrees
with Figure 7. Neither controller is able to provide the

desired attenuation above 104 rad/sec.
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Figure 8: Experimental Closed-Loop Peak Gains for Bay 3
Accelerometers with X_ (--) and K_ (- - -)

The similar performance levels on the physical struc-

ture somewhat contradict the output feedback p anal-

ysis, which anticipated K 3 should provide 40% better
attenuation, but agree more closely with the Full Con-

trol analysis, which anticipated each controller should

provide similar attenuation levels.

Flexible Structure : Bay 4 Attenuation

The achievable performance levels of optimal Full Con-

trol compensators to attenuate vibrations measured by

Bay 4 accelerometers for various sensor configurations is

given in the last column of Table 1.

These performance levels clearly indicate some measure

of the Bay 4 accelerometers is required for adequate at-

tenuation of Bay 4 vibrations. Synthesizing a Full Con-
trol compensator using the entire set of Bay 3 accelerom-

eters achieves a/_ value of .719 while a p value is .511 is

achieved using the three Bay 4 accelerometers.

The need for utilizing Bay 4 accelerometers to control

Bay 4 vibrations is demonstrated by the open-loop modal

responses in Figure 3. A torsional mode exists at 62

tad/see that is clearly observable by Bay 4 but does not

appear in the frequency response data of Bay 3. Any

feedback configuration utilizing only Bay 3 sensors fails

to provide information to the controller about the tor-
sional mode dynamics at this frequency. Consequently,

the controller can not properly cancel these dynamics as
is demonstrated by the poor closed-loop performance.

Output feedback controllers are generated using D-K it-

eration for vibration attenuation of the Bay 4 accelerom-
eters. Separate controllers are designed for 2 different

feedback configurations. The first controller, K 4, will

use the 3 sensors in Bay 3 to control vibration in Bay 4.

The second controller, K_, will feedback the 3 sensors in

Bay 4 to attenuate vibration in Bay 4. Magnitude plots

are given for K 4 in Figure 9a and for K 4 in Figure 9b.
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Figure 9: Magnitude Gains for K 4 (a) and K44 (b)

Robust stability for the linear plant model with each

controller with respect to the uncertainty description in

Figure 1 is computed using p. All uncertainty operators

axe complex and linear, time-invariant. Each controller

achieves robust stability with/J values of .789 for K44 and

.707 for K34. Robust stability p is shown in Figure 10.
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Nominal performance is also calculated for each con-

troller as .543 for/(44 and 1.199 for K 4. The weighted

norm greater than 1 indicates K34 using the Bay 3 sensors
for feedback is unable to achieve the desired performance

objectives. K_ presents a/_ less than 1 and is able to

achieve nominal performance. Nominal performance p

is plotted in Figure 11.
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Figure 11: p for Nominal Performance

The robust performance p values for each controller are

given in Figure 12. The p upper bounds are computed as
.982 for K_ and 1.269 for/(34. The controller using Bay 4

feedback, K 4, is able to achieve robust performance while

K34 is unable to achieve the desired robustness goals due

to its associated/_ being greater than 1.

The/_ plots show controller synthesis of K34 is driven by

the unobserved torsional mode at 62 rad/sec. The con-

troller is able to lower the weighted nominal performance
measure to less than 1 near this modal frequency; how-

ever, the robust stability/_ is raised as a tradeoff. Robust

performance p demonstrates K34 is unable to simulta-

neously achieve the desired performance and robustness

goals with the peak/_ occurring at 62 rud/sec.

The peak p for robust performance with K44 occurs at
104 rad/sec. This is the 4 th bending mode which is only

weakly observed by Bay 4 and has a high level of additive

uncertainty. K44 does not receive sui_icient information

about this mode in the presence of the noise and addi-
tive uncertainty and thus the closed-loop performance is

only slightly more attenuated than the open-loop perfor-

mance. The controller bandwidths in Figures 9a and 9b

show K34 is able to roll off noticeably faster than K44 due
to observance of this mode.

Implementing each controller configuration on the ex-

perimental flexible structure produces performance lev-
eis which agree with the Full Control synthesis results.

Using Bay 4 accelerometers as feedback measurements

allows better vibration attenuation than using Bay 3

feedbacks. Peaks gains of closed-loop transfer functions

from the experimental flexible structure are presented in

Figure 13. K 4 demonstrates the expected poor perfor-

mance in attenuating the 62 rad/sec mode while K 4 is

able to attenuate each mode to nearly equal peak gains
as expected by the p plots.
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Figure 13: Experimental Closed-Loop Peak Gains for Bay 4
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